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Method of Local Approximations in Thermophysical 
Property Calculations: Estimation of Errors in 
Derived Thermodynamic Properties 
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An algorithm for thermophysical property calculations based on the finite- 
element approximation i~ the thermodynamic plane has been suggested. Ks an 
example of using the algorithm, errors in oblaining the compressibility of ethane 
and its derivatives with respect to reduced density and temperature are 
discussed. 

KEY WORDS: ethane; finite-element approximation; P, p, T data; thermo- 
dynamic pla~e. 

1. I N T R O D U C T I O N  

Estimation of the errors in obtaining thermodynamic functions is the 
weakest point of the procedure of computing thermophysical properties of 
liquids and gases from the experimental, P, p, T data. Such a calculation 
presupposes determining of the thermodynamic surface z(x, y), where 
z = P V / R T  stands for compressibility; x = p / p r  is reduced density, and 
T =  TIT  c is reduced temperature. The computational  formulas contain the 
values of the function z and its first- and second-order derivatives. The 
main difficulties in estimating the computat ional  error arise in numerical 
determination of the partial derivatives oF compressibility. 

The error estimation effectiveness depends largely on the algorithm of 
calculating thermodynamic functions. If the basis of this algorithm is a 
mathematical  evaluation of experimental data over a wide range of varia- 
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tion of state variables, then final comparison with the experiment is the 
only way of proving validity of the calculation [ 1 ]. In this case, the local 
nature of the procedure of obtaining derivatives is partly concealed. In 
other words, the error of computing derivatives at (Xo, Yo) should be deter- 
mined by a sufficient number of experimental data and their distribution in 
the thermodynamic plane. 

In the present paper, as a basic step of the algorithm of calculation, we 
highlight determining the values of compressibility and its derivatives up to 
order two at a given point of the thermodynamic surface. Numerical 
realization of this step is based on finite-element approximation [2]. 

2. ALGORITHM OF DETERMINATION OF COMPRESSIBILITY 
AND ITS DERIVATIVES 

Assuming that the experimental values of z are known at points 
(xk, Yk), k = 1,..., K. For determining the values of z(x, y), (Oz/~x), and 
(0z/~y) at a point (x0, Y0), proceed as follows. Construct a triangulation in 
some neighborhood of this point in s u c h a  manner that (Xo, Yo) is the 
common vertex of all triangles (Fig. 1). Here, care must be taken that a 
sufficient number of experimental points falls within each triangle. The 
local approximation of a thermodynamic surface in the neighborhood of 
(Xo, Yo) is expressed as 

N Mi 

z(x, y)= Y ~ b~i~(x, y) (1) 
i = 1  s = l  

where N is the number of nodes of triangulation, Mi is the number of 
degrees of freedom in the ith node, ~b~(x, y) is the finite-element basic func- 
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Fig. 1. Triangulation of the neighborhood of a 
calculated point in the thermodynamic plane. 
(O) Calculated point; (&) experimental data; 
(�9 nodes of triangulation. 
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tion associated with the sth degree of freedom of the ith node, and b e are 
unknown coefficients. The meaning of coefficients b~ is known to depend on 
the choice of the type of an element, i.e., its geometry and the degrees of 
freedom. As we are interested in knowing the values of the functions and 
its first derivatives at the point (x 0' Yo), it is natural to choose a Hermitian 
triangle of type 3' (Zienkiewicz triangle) [3]. The coefficients b e appearing 
in Eq. (1) are the values of the function and its first derivatives at the nodes 
of triangulation, i.e., at the vertexes of triangles. Thus, if we number the 
nodes as in Fig. 1, then the first three coefficients, b{, by, and b~, will yield, 
respectively, the unknown approximate values of z(x, y), (~?z/~?x), and 
(#z/@) at the point (Xo, Yo). 

The basic functions on element for the Zienkiewicz triangle are 
determined by the following relationships [3]: 

~ = -223 + 32~ + 2212223 

3 

s 3 2223 ] s S = 2, 3 (2) ~. = 2 [2.2j(22. + 2 j -  ~) + ~21 tj~, 
j = l  
nv~j 

t}, = as - a~, t~, = @ - a], , = 1 , 2 , 3  

where 21, 22, and 23 are the barycentric coordinates of the point (x, y), 
;7 and a~ and ay are the Cartesian coordinates of the nth vertex of the 

element. The ~b)(x, y) functions are related to the basic functions of the 
element by the following relationships: 

where n is the local number of the ith global node. 
Thus, knowing z , ,  (8z/ax), ,  and (#z/ay), ,  the values of the function 

and first derivatives at the nodes of triangulation (in the given case, at the 
vertexes of the triangle), we can write the following approximation for any 
interior point (x, y) of the element: 

1 (~Z # Z  3 

r t = l  

The coefficients b are determined by minimizing the functional 

S= ~ W k 2 b'~O;(xk, yk)--Zk (4) 
k = l  i 1 s = l  

where Zk denotes the experimental value of compressibility at the kth 
point, and Wk stands for the weight characterizing the relative "value" of 
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the kth experimental point [-1 ]. The second derivatives can be determined 
in a similar way by minimizing the functionals 

S x = ~  
k = l  i 1 s = l  

S~= 
k = l  i 1 s = l  

l csCS(x~' \ax/k3 

l d~(xk, yk)- \ayJkA 

(5) 

Here, (&/~?X)k and (&/Oy)k are the values of first derivatives of com- 
pressibility at the kth point; these values are obtained by differentiating (1). 
The corresponding values of second derivatives are 

2 Z ~ 2Z (~ 2 Z ~ 2 2" 
2 3 = d~ d 2 = 

Cl - -  ~ X  2 '  CI 3y a:C' -- ~y2' 0X @ 

Thus, computation of first-order derivatives demands single construc- 
tion of a local approximation (1). The determination of second-order 
derivaties presupposes (i) computation of values of first-order derivatives at 
the nodes of triangulation (Fig. 1), (ii) their interpolation at some interior 
points, and (iii) repeat construction of an approximation of type (1) after 
solving the least-squares problems (5). 

3. RESULTS 

For testing the above-described algorithm, seven domains were taken 
in the p-T plane as shown in Fig. 2. The values of the z(x, y) function and 

t6- 1 

42-{ t ~  

o.s -ll 

Q6- 

Q4- 

o2i:: 

Fig. 2. 

xo@__ 
& Q~ 12 is -2o ~4 2s 3.a a.6 ~Z- 44 

Test domains for ethane, x, reduced density; y, reduced tem- 
perature. 
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Fig. 3. Variants of triangulation and distribu- 
tion of experimental points in the test domain: 
(a) T06P030; (b) T06P43; (c) T06P051. (@) 
Calculated point; (.) experimental data. 

Fig. 4. Mapping of triangulation onto test domain, x, 
reduced density; y, reduced temperature. 
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its first- and second-order derivatives at the central point of each domain 
were determined for three variants of triangulation and distribution of 
experimental points, shown in Fig. 3. The rectangles shown in Fig. 3 were 
mapped onto any of the test domains to obtain images of corresponding 
triangulations and distributions directly in the thermodynamic plane. Here 
the corresponding vertexes of rectangles must coincide (Fig. 4). 

Table I contains results of calculations for ethane. Exact values of 
compressibility and its derivatives were determined by the equation of 
state, given in Ref. 4. As seen from Table I, the relative errors of obtaining 
compressibility and its first derivatives with respect to reduced density and 
temperature, denoted by dZ, dZx, and dZy, are sufficiently small and do 
not exceed, on the average, tens of fractions of a percent. In typical cases, 
the errors of restoring second-order derivatives, denoted by dZxx and 
dZyy, do not exceed 5-10% for triangulations containing more then 30 
experimental points. As the dimensions of test domains decrease and the 
number of experimental points increases, the restoration error decreases. 
The data listed in Table I illustrate also the dependence of error on the 
localization of the test domain in the thermodynamic plane, i.e., on the 
nature of variation of function z(x, y). 

4. CONCLUSION 

In practice, estimation of the reliability of a calculation is of great 
importance. A great number of difficulties are faced in estimating the 
accuracy of determining derivatives. We believe that the use of finite- 
element approximations in the thermodynamic plane is sufficiently promis- 
ing for overcoming these difficalties. Since a detailed discussion of this 
question is beyond the scope of the present paper, we restrict ourselves to 
the following remarks. 

The accuracy of obtaining the values of a function and its derivatives 
is determined by the norm of the function, the method of constructing an 
approximation, and the characteristics of the experiment, such as errors in 
data and distribution of experimental points in the thermodynamic plane. 
The use of local approximations permits the statistical modeling methods 
to be utilized for establishing a relationship between the error of restoring 
the derivatives and the descriptors of these characteristics. The effect of the 
nature of distribution of experimental data is not sufficiently well studied; 
a more detailed study of this may provide answers to a number of practi- 
cally important points. 
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