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Note

Method of Local Approximations in Thermophysical
Property Calculations: Estimation of Errors in
Derived Thermodynamic Properties

K. M. Magomedov,' B. L. Tsentsiper,' and 1. M. Abdulagatov’

Received September 29, 1989

An algorithm for thermophysical property calculations based on the finite-
element approximation in the thermodynamic plane has been suggested. As an
example of using the algonitbm, errors in obtaining the compressibility of ethane
and its derivatives with respect to reduced density and temperature are
discussed.

KEY WORDS: cthane; finite-element approximation; P, p, T data; thermo-
dynamic plane.

1. INTRODUCTION

Estimation of the errors in obtaining thermodynamic functions is the
weakest point of the procedure of computing thermophysical properties of
liquids and gases from the experimental P, g, T data. Such a calculation
presupposes determining of the thermodynamic surface z(x, y), where
z=PV/RT stands for compressibility; x=p/p. is reduced density, and
T'=1T/T, is reduced temperature. The computational formulas contain the
values of the function z and its first- and second-order derivatives. The
main difficulties in estimating the computational error arise in numerical
determination of the partial denvatives of compressibility.

The error estimation effectiveness depends largely on the algorithm of
calculating thermodynamic functions. If the basis of this algorithm is a
mathematical evaluation of experimental data over a wide range of varia-
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tion of state variables, then final comparison with the experiment is the
only way of proving validity of the calculation [1]. In this case, the local
nature of the procedure of obtaining derivatives is partly concealed. In
other words, the error of computing derivatives at (x,, y,) should be deter-
mined by a sufficient number of experimental data and their distribution in
the thermodynamic plane.

In the present paper, as a basic step of the algorithm of calculation, we
highlight determining the values of compressibility and its derivatives up to
order two at a given point of the thermodynamic surface. Numerical
realization of this step is based on finite-element approximation [2].

2. ALGORITHM OF DETERMINATION OF COMPRESSIBILITY
AND ITS DERIVATIVES

Assuming that the experimental values of z are known at points
(xgs v&), k=1,.., K For determining the values of z(x, y), (dz/dx), and
(6z/dy) at a point (x,, y,), proceed as follows. Construct a triangulation in
some neighborhood of this point in such a manner that (x,, y,) is the
common vertex of all triangles (Fig. 1). Here, care must be taken that a
sufficient number of experimental points falls within each triangle. The
local approximation of a thermodynamic surface in the neighborhood of
(x9, yo) Is expressed as

N M;
2(x, y)=) ) bidilx, y) (1)

i=1 s=1
where N is the number of nodes of triangulation, M, is the number of
degrees of freedom in the ith node, ¢3(x, y) is the finite-element basic func-

Fig. 1. Triangulation of the neighborhood of a
calculated point in the thermodynamic plane.
(®) Calculated point; (A) experimental data;
(O) nodes of triangulation.
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tion associated with the sth degree of freedom of the ith node, and 57 are
unknown coefficients. The meaning of coefficients b7 is known to depend on
the choice of the type of an element, i.e., its geometry and the degrees of
freedom. As we are interested in knowing the values of the functions and
its first derivatives at the point (x,, V,), it is natural to choose a Hermitian
triangle of type 3’ (Zienkiewicz triangle) [3]. The coefficients b7 appearing
in Eq. (1) are the values of the function and its first derivatives at the nodes
of triangulation, ie., at the vertexes of triangles. Thus, if we number the
nodes as in Fig. 1, then the first three coefficients, 57, b7, and b3, will yield,
respectively, the unknown approximate values of z(x, y), (dz/0x), and
(6z/0y) at the point (x4, Vo).

The basic functions on element for the Zienkiewicz triangle are
determined by the following relationships [3]:

Wi= =223 4312424, 40k,

3
=3 [Z,AQ24+4~1)+22,4,4;] Lons §=2,3 2)
oy
t=al—di, t,=d,—a), n=1273

where 4,, 1,, and 4, are the barycentric coordinates of the point (x, y),
and a7, and a} are the Cartesian coordinates of the nth vertex of the
element. The ¢i(x, y) functions are related to the basic functions of the
element by the following relationships:

9i(x, Y)=¥(41, Ars 4s)

where n 1s the local number of the ith global node.

Thus, knowing z,, (0z/0x),, and (0z/0y),, the values of the function
and first derivatives at the nodes of triangulation (in the given case, at the
vertexes of the triangle), we can write the following approximation for any
interior point (x, y) of the element:

2(x, y)= ni 2+ (5) vie(5) v2] (3)

The coefficients b are determined by minimizing the functional
A N M; 2
S= Z Wk,:z Z bii(xk, yk)—ijl (4)
k=1 i=1s=1

where Z, denotes the experimental value of compressibility at the kth
point, and W, stands for the weight characterizing the relative “value” of
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the kth experimental point [1]. The second derivatives can be determined
in a similar way by minimizing the functionals

i[% % cig; xk,yk)—( >]2

k; i ;1 S;I’l . (5)
-2 |2 % dvmr-(5) |
k=1 i=1s5s=1 k
Here, (0z/0x), and (8z/dy), are the values of first derivatives of com-
pressibility at the kth point; these values are obtained by differentiating (1).

The corresponding values of second derivatives are

0%z , 0%z , 0%z , 0%
35 OT I35 1=%772 1=

ox? oy ox dy Ox Oy

2_
=

Thus, computation of first-order derivatives demands single construc-
tion of a local approximation (1). The determination of second-order
derivaties presupposes (i) computation of values of first-order derivatives at
the nodes of triangulation (Fig. 1), (ii) their interpolation at some interior
points, and (iii) repeat construction of an approximation of type (1) after
solving the least-squares problems (5).

3. RESULTS

For testing the above-described algorithm, seven domains were taken
in the p—T plane as shown in Fig. 2. The values of the z(x, y) function and

o e i T35 24 38 32 46 40 44

Fig. 2. Test domains for ethane. x, reduced density; y, reduced tem-
perature.
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Fig. 3. Variants of triangulation and distribu-
tion of experimental points in the test domain:
(a) TO6PO30; (b) TO6P43; (c) TO6P051. (()
Calculated point; (-) experimental data.
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Fig. 4. Mapping of triangulation onto test domain. x,
reduced density; y, reduced temperature.
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its first- and second-order derivatives at the central point of each domain
were determined for three variants of triangulation and distribution of
experimental points, shown in Fig. 3. The rectangles shown in Fig. 3 were
mapped onto any of the test domains to obtain images of corresponding
triangulations and distributions directly in the thermodynamic plane. Here
the corresponding vertexes of rectangles must coincide (Fig. 4).

Table T contains results of calculations for ethane. Exact values of
compressibility and its derivatives were determined by the equation of
state, given in Ref. 4. As seen from Table I, the relative errors of obtaining
compressibility and its first derivatives with respect to reduced density and
temperature, denoted by dZ, dZx, and dZy, are sufficiently small and do
not exceed, on the average, tens of fractions of a percent. In typical cases,
the errors of restoring second-order derivatives, denoted by dZxx and
dZyy, do not exceed 5-10% for triangulations containing more then 30
experimental points. As the dimensions of test domains decrease and the
number of experimental points increases, the restoration error decreases.
The data listed in Table I illustrate also the dependence of error on the
localization of the test domain in the thermodynamic plane, ie., on the
nature of variation of function z(x, y).

4, CONCLUSION

In practice, estimation of the reliability of a calculation is of great
mmportance. A great number of difficulties are faced in estimating the
accuracy of determining derivatives. We believe that the use of finite-
element approximations in the thermodynamic plane is sufficiently promis-
ing for overcoming these difficalties. Since a detailed discussion of this
question is beyond the scope of the present paper, we restrict ourselves to
the following remarks.

The accuracy of obtaining the values of a function and its derivatives
is determined by the norm of the function, the method of constructing an
approximation, and the characteristics of the experiment, such as errors in
data and distribution of experimental points in the thermodynamic plane.
The use of local approximations permits the statistical modeling methods
to be utilized for establishing a relationship between the error of restoring
the derivatives and the descriptors of these characteristics. The effect of the
nature of distribution of experimental data is not sufficiently well studied;
a more detailed study of this may provide answers to a number of practi-
cally important points.
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